MATH 2010 Advanced Calculus

Suggested Solution of Homework 9

Sectioni4.8 @2

$\nabla f=y \mathbf{i}+x \mathbf{j}$ and $\nabla g=2 x \mathbf{i}+2 y \mathbf{j}$ so that $\nabla f=\lambda \nabla g \Rightarrow y \mathbf{i}+x \mathbf{j}=\lambda(2 x \mathbf{i}+2 y \mathbf{j}) \Rightarrow y=2 x \lambda$ and $x=2 y \lambda$
$\Rightarrow x=4 x \lambda^{2} \Rightarrow x=0$ or $\lambda= \pm \frac{1}{2}$.
CASE 1: If $x=0$, then $y=0$. But $(0,0)$ is not on the circle $x^{2}+y^{2}-10=0$ so $x \neq 0$.
CASE 2: $x \neq 0 \Rightarrow \lambda= \pm \frac{1}{2} \Rightarrow y=2 x\left(\pm \frac{1}{2}\right)= \pm x \Rightarrow x^{2}+(\pm x)^{2}-10=0 \Rightarrow x= \pm \sqrt{5} \Rightarrow y= \pm \sqrt{5}$.
Therefore f takes on its extreme values at $(\pm \sqrt{5}, \sqrt{5})$ and $(\pm \sqrt{5},-\sqrt{5})$. The extreme values of f on the circle are 5 and -5 .

Section14.8 @3

$\nabla f=-2 x \mathbf{i}-2 y \mathbf{j}$ and $\nabla g=\mathbf{i}+3 \mathbf{j}$ so that $\nabla f=\lambda \nabla g \Rightarrow-2 x \mathbf{i}-2 y \mathbf{j}=\lambda(\mathbf{i}+3 \mathbf{j}) \Rightarrow x=-\frac{\lambda}{2}$ and $y=-\frac{3 \lambda}{2}$
$\Rightarrow\left(-\frac{\lambda}{2}\right)+3\left(-\frac{3 \lambda}{2}\right)=10 \Rightarrow \lambda=-2 \Rightarrow x=1$ and $y=3 \Rightarrow f$ takes on its extreme value at $(1,3)$ on the line. The extreme value is $f(1,3)=49-1-9=39$.

Section⒋8 05

We optimize $f(x, y)=x^{2}+y^{2}$, the square of the distance to the origin, subject to the constraint $g(x, y)=x y^{2}-54=0$. Thus $\nabla f=2 x \mathbf{i}+2 y \mathbf{j}$ and $\nabla g=y^{2} \mathbf{i}+2 x y \mathbf{j}$ so that $\nabla f=\lambda \nabla g \Rightarrow 2 x \mathbf{i}+2 y \mathbf{j}$ $=\lambda\left(\mathrm{y}^{2} \mathbf{i}+2 x y \mathbf{j}\right) \Rightarrow 2 x=\lambda \mathrm{y}^{2}$ and $2 y=2 \lambda x y$.

CASE 1: If $y=0$, then $x=0$. But $(0,0)$ does not satisfy the constraint $x y^{2}=54$ so $y \neq 0$.
CASE 2: If $y \neq 0$, then $2=2 \lambda x \Rightarrow x=\frac{1}{\lambda} \Rightarrow 2\left(\frac{1}{\lambda}\right)=\lambda y^{2} \Rightarrow y^{2}=\frac{2}{\lambda^{2}}$. Then $x y^{2}=54 \Rightarrow\left(\frac{1}{\lambda}\right)\left(\frac{2}{\lambda^{2}}\right)=54$

$$
\Rightarrow \lambda^{3}=\frac{1}{27} \Rightarrow \lambda=\frac{1}{3} \Rightarrow x=3 \text { and } y^{2}=18 \Rightarrow x=3 \text { and } y= \pm 3 \sqrt{2}
$$

Therefore $(3, \pm 3 \sqrt{2})$ are the points on the curve $x y^{2}=54$ nearest the origin (since $x y^{2}=54$ has points increasingly far away as y gets close to 0 , no points are farthest away).

Section 4.8 @9

$V=\pi r^{2} h \Rightarrow 16 \pi=\pi r^{2} h \Rightarrow 16=r^{2} h \Rightarrow g(r, h)=r^{2} h-16 ; S=2 \pi r h+2 \pi r^{2} \Rightarrow \nabla S=(2 \pi h+4 \pi r) \mathbf{i}+2 \pi r \mathbf{j}$ and $\nabla g=2 r h \mathbf{i}+r^{2} \mathbf{j}$ so that $\nabla S=\lambda \nabla g \Rightarrow(2 \pi r h+4 \pi r) \mathbf{i}+2 \pi r \mathbf{j}=\lambda\left(2 r h \mathbf{i}+r^{2} \mathbf{j}\right) \Rightarrow 2 \pi r h+4 \pi r=2 r h \lambda$ and $2 \pi r=\lambda r^{2} \Rightarrow r=0$ or $\lambda=\frac{2 \pi}{r}$. But $r=0$ gives no physical can, so $r \neq 0 \Rightarrow \lambda=\frac{2 \pi}{r} \Rightarrow 2 \pi h+4 \pi r=2 r h\left(\frac{2 \pi}{r}\right)$ $\Rightarrow 2 r=h \Rightarrow 16=r^{2}(2 r) \Rightarrow r=2 \Rightarrow h=4$; thus $r=2 \mathrm{~cm}$ and $h=4 \mathrm{~cm}$ give the only extreme surface area of $24 \pi \mathrm{~cm}^{2}$. Since $r=4 \mathrm{~cm}$ and $h=1 \mathrm{~cm} \Rightarrow V=16 \pi \mathrm{~cm}^{3}$ and $S=40 \pi \mathrm{~cm}^{2}$, which is a larger surface area, then $24 \pi \mathrm{~cm}^{2}$ must be the minimum surface area.

Section14.8 @11

$A=(2 x)(2 y)=4 x y$ subject to $g(x, y)=\frac{x^{2}}{16}+\frac{y^{2}}{9}-1=0 ; \nabla A=4 y \mathbf{i}+4 x \mathbf{j}$ and $\nabla g=\frac{x}{8} \mathbf{i}+\frac{2 y}{9} \mathbf{j}$ so that $\nabla A=\lambda \nabla g \Rightarrow 4 y \mathbf{i}+4 x \mathbf{j}=\lambda\left(\frac{x}{8} \mathbf{i}+\frac{2 y}{9} \mathbf{j}\right) \Rightarrow 4 y=\left(\frac{x}{8}\right) \lambda$ and $4 x=\left(\frac{2 y}{9}\right) \lambda \Rightarrow \lambda=\frac{32 y}{x}$ and $4 x=\left(\frac{2 y}{9}\right)\left(\frac{32 y}{x}\right)$ $\Rightarrow y= \pm \frac{3}{4} x \Rightarrow \frac{x^{2}}{16}+\frac{\left(\pm \frac{3}{4} x\right)^{2}}{9}=1 \Rightarrow x^{2}=8 \Rightarrow x= \pm 2 \sqrt{2}$. We use $x=2 \sqrt{2}$ since x represents distance. Then $y=\frac{3}{4}(2 \sqrt{2})=\frac{3 \sqrt{2}}{2}$, so the length is $2 x=4 \sqrt{2}$ and the width is $2 y=3 \sqrt{2}$.

Sectiond4o8 @13

$\nabla f=2 x \mathbf{i}+2 y \mathbf{j}$ and $\nabla g=(2 x-2) \mathbf{i}+(2 y-4) \mathbf{j}$ so that $\nabla f=\lambda \nabla g=2 x \mathbf{i}+2 y \mathbf{j}=\lambda[(2 x-2) \mathbf{i}+(2 y-4) \mathbf{j}]$
$\Rightarrow 2 x=\lambda(2 x-2)$ and $2 y=\lambda(2 y-4) \Rightarrow x=\frac{\lambda}{\lambda-1}$, and $y=\frac{2 \lambda}{\lambda-1}, \lambda \neq 1 \Rightarrow y=2 x$
$\Rightarrow x^{2}-2 x+(2 x)^{2}-4(2 x)=0 \Rightarrow x=0$ and $y=0$, or $x=2$ and $y=4$. $f(0,0)=0$ is the minimum value and $f(2,4)=20$ is the maximum value. (Note that $\lambda=1$ gives $2 x=2 x-2$ or $0=-2$, which is impossible.)

SectionI4.8 @14

$\nabla f=3 \mathbf{i}-\mathbf{j}$ and $\nabla g=2 x \mathbf{i}+2 y \mathbf{j}$ so that $\nabla f=\lambda \nabla g \Rightarrow 3=2 \lambda x$ and $-1=2 \lambda y \Rightarrow \lambda=\frac{3}{2 x}$ and $-1=2\left(\frac{3}{2 x}\right) y$ $\Rightarrow y=-\frac{x}{3} \Rightarrow x^{2}+\left(-\frac{x}{3}\right)^{2}=4 \Rightarrow 10 x^{2}=36 \Rightarrow x= \pm \frac{6}{\sqrt{10}} \Rightarrow x=\frac{6}{\sqrt{10}}$ and $y=-\frac{2}{\sqrt{10}}$, or $x=-\frac{6}{\sqrt{10}}$ and $y=\frac{2}{\sqrt{10}}$. Therefore $f\left(\frac{6}{\sqrt{10}},-\frac{2}{\sqrt{10}}\right)=\frac{20}{\sqrt{10}}+6=2 \sqrt{10}+6 \approx 12.325$ is the maximum value, and $f\left(-\frac{6}{\sqrt{10}}, \frac{2}{\sqrt{10}}\right)$ $=-2 \sqrt{10}+6 \approx-0.325$ is the minimum value .

Section14.0 @2

$f(x, y)=e^{x} \cos y \Rightarrow f_{x}=e^{x} \cos y, f_{y}=-e^{x} \sin y, f_{x x}=e^{x} \cos y, f_{x y}=-e^{x} \sin y, f_{y y}=-e^{x} \cos y$
$\Rightarrow f(x, y) \approx f(0,0)+x f_{x}(0,0)+y f_{y}(0,0)+\frac{1}{2}\left[x^{2} f_{x x}(0,0)+2 x y f_{x y}(0,0)+y^{2} f_{y y}(0,0)\right]$
$=1+x \cdot 1+y \cdot 0+\frac{1}{2}\left[x^{2} \cdot 1+2 x y \cdot 0+y^{2} \cdot(-1)\right]=1+x+\frac{1}{2}\left(x^{2}-y^{2}\right)$, quadratic approximation;

Section14.9 @5

$f(x, y)=e^{x} \ln (1+y) \Rightarrow f_{x}=e^{x} \ln (1+y), f_{y}=\frac{e^{x}}{1+y}, f_{x x}=e^{x} \ln (1+y), f_{x y}=\frac{e^{x}}{1+y}, f_{y y}=-\frac{e^{x}}{(1+y)^{2}}$
$\Rightarrow f(x, y) \approx f(0,0)+x f_{x}(0,0)+y f_{y}(0,0)+\frac{1}{2}\left[x^{2} f_{x x}(0,0)+2 x y f_{x y}(0,0)+y^{2} f_{y y}(0,0)\right]$
$=0+x \cdot 0+y \cdot 1+\frac{1}{2}\left[x^{2} \cdot 0+2 x y \cdot 1+y^{2} \cdot(-1)\right]=y+\frac{1}{2}\left(2 x y-y^{2}\right)$, quadratic approximation;

Section14.9 ©8

$$
\begin{aligned}
& f(x, y)=\cos \left(x^{2}+y^{2}\right) \Rightarrow f_{x}=-2 x \sin \left(x^{2}+y^{2}\right), f_{y}=-2 y \sin \left(x^{2}+y^{2}\right), \\
& f_{x x}=-2 \sin \left(x^{2}+y^{2}\right)-4 x^{2} \cos \left(x^{2}+y^{2}\right), f_{x y}=-4 x y \cos \left(x^{2}+y^{2}\right), f_{y y}=-2 \sin \left(x^{2}+y^{2}\right)-4 y^{2} \cos \left(x^{2}+y^{2}\right) \\
& \Rightarrow f(x, y) \approx f(0,0)+x f_{x}(0,0)+y f_{y}(0,0)+\frac{1}{2}\left[x^{2} f_{x x}(0,0)+2 x y f_{x y}(0,0)+y^{2} f_{y y}(0,0)\right] \\
& =1+x \cdot 0+y \cdot 0+\frac{1}{2}\left[x^{2} \cdot 0+2 x y \cdot 0+y^{2} \cdot 0\right]=1, \text { quadratic approximation; }
\end{aligned}
$$

